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The spiralling flow within a curved tube of rectangular cross-section normally forms 
two distinct cells in the plane of the cross-section, but a transition to a different, 
four-cell flow is known to occur at a critical value of the axial pressure gradient. This 
paper shows that, for a square cross-section, the transition is a result of a complex 
structure of multiple, symmetric and asymmetric solutions. The structure is revealed 
by solving extended systems of equations for steady-state, fully developed, laminar 
flow, in a finite-element approximation, to locate exactly the positions of singular 
points. Continuation methods are used to trace the paths of these points as the aspect 
ratio and radius of curvature vary. For a square cross-section, multiple, symmetric 
flows of both two and four cells are found in two distinct ranges of axial pressure 
gradient q. In addition, a pair of asymmetric solutions arise from a symmetry- 
breaking bifurcation point on the primary flow branch. The paths of limit points and 
symmetry-breaking bifurcation points are obtained as the aspect ratio y varies, and 
a transcritical bifurcation point is found at y = 1.43. For larger aspect ratios the 
secondary four-cell branch is disconnected from that of the primary two-cell flow. 
The bifurcation set in the two parameters q and y has a complex structure, with a 
number of higher-order singularities; in particular, the path of limit points is found 
to cross in the manner of an unfolded swallowtail catastrophe. A stability analysis 
shows that all multiple solutions except the two-cell type are unstable with respect 
to either symmetric or antisymmetric perturbations. For values of the aspect ratio 
less than 1.43 there is a range of axial pressure gradients for which there is no stable 
flow. The critical Dean numbers of the singular points are found to vary strongly at 
small values of radius of curvature /3, but the bifurcation set remains qualitatively 
the same. Previous work is interpreted in the light of the present results. 

1. Introduction 
The study of fluid flow within curved tubes has a long history, beginning with the 

observations of Thomson (1876) ; a summary of references to this early work is given 
by Manlapaz & Churchill (1980). Dean (1928) showed that the fully developed flow 
is characterized by a single parameter, a combination of the Reynolds number and 
the radius of curvature /3 of the coil, for large values of /3. This parameter is now known 
as the Dean number, although several definitions of this quantity are in current use. 
We note that the flow in a curved tube is well approximated by a helical coil of small 
pitch (Manlapaz & Churchill 1980). 

When fluid passes along a curved tube a centrifugal force induces a component of 
flow in the plane of the tube cross-section, resulting in a spiralling motion. When this 
secondary flow in the plane of the cross-section is represented by streamlines, then 
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typically there are two counter-rotating cells, disposed symmetrically about the 
radius of curvature of the coil. 

In  the early work the observed flow comprised two counter-rotating cells only. 
More recently, four-cell flows have been found, with the additional pair of cells 
adjacent to the outer wall of the tube. Joseph, Smith & Adler (1975), Cheng, Lin & 
Ou (1976), Ghia & Sokhey (1977) and De Vriend (1981) have predicted four-cell flows 
within rectangular cross-sections. The work of Masliyah (1980), Nandakumar & 
Masliyah (1982) and Dennis & Ng (1982) has revealed four-cell flows also, within 
circular and semicircular ducts. Experimental verification of these four-cell solutions 
is provided by Joseph et al. (1975) and Hille, Vehrenkamp & Schulz-DuBois (1985) 
for rectangular sections, and by Masliyah (1980) for semicircular sections. 

In  the case of circular and semicircular cross-sections, this recent work shows that 
the four-cell flows correspond to dual solutions of the governing equations, since they 
are found at the same Dean number as the two-cell flows, above a critical value. For 
rectangular cross-sections, however, the four-cell flow appears at a critical Dean 
number, as a transition from the two-cell flow, and no dual solutions have been 
reported. 

Despite this work, our understanding of the four-cell flows is still very limited. It 
is unclear why they should appear as a transition from the normal flow, for 
rectangular cross-sections, but as dual solutions for circular and semicircular ducts. 
No computation has predicted more than two solutions of a particular flow, except 
for the preliminary work of Winters & Brindley (1984), yet an odd number of solutions 
is expected (Benjamin 1978) above the critical Dean number, with at least one 
solution being unstable. Moreover, where steady-state calculations have predicted a 
dual four-cell solution, there has been no indication as to its stability. 

The aim of the present paper is to establish the precise solution structure that gives 
rise to the observed and predicted flows in curved tubes of rectangular cross-section. 
Since multiple solutions arise from the nonlinearities in the Navier-Stokes equations, 
the techniques of bifurcation theory are an appropriate tool for resolving this 
structure. In  particular, so-called extended systems have been used successfully in 
a number of bifurcation studies involving ordinary differential equations. They have 
been applied recently to the study of bifurcations in the partial differential equations 
of fluid flow and heat transfer (Cliffe & Winters 1983; Cliffe 1983, 1984; Cliffe & 
Winters 1984,1986; Winters & Cliffe 1985; Cliffe & Spence 1984; Winters & Brindley 
1984; Winters, Cliffe & Jackson 1984; Cliffe & Mullin 1985). In this approach, the 
singular points of the equations that model the fluid flow are found by solving 
simultaneously the flow equations together with characteristic conditions that are 
satisfied specifically at the singular point. The solution of the extended system then 
converges to the solution of the basic equations at such a singular point, and reveals 
the exact location of the singularity. Continuation methods (Keller 1977) may then 
be applied to the extended system to follow the paths of singular points as other 
parameters in the problem vary. 

Thus, the procedure adopted in this study may be summarized as follows: 
(i) the basic Navier-Stokes equations for flow in a curved tube of square 

cross-section (y  = 1) are solved a t  increasing values of axial pressure gradient q, using 
continuation in q to follow the primary solution branch arising at q = 0. Limit points 
and symmetry-breaking bifurcation points are located approximately by monitoring 
the sign of the Jacobian determinant ; 

(ii) when a limit point or symmetry-breaking bifurcation point is found, the 
appropriate extended system based on the Navier-Stokes equations is solved to 



Bifurcation of laminar flow in a curved tube of rectangular cross-section 345 

locate exactly the position of the singular point on the solution branch. Then the 
paths of these singular points are obtained for rectangular cross-sections by contin- 
uation in the aspect ratio y .  This reveals secondary branches that are disconnected 
from the primary branch, and also higher-order singularities on the paths of singular 
points; 

(iii) appropriate extended systems of Navier-Stokes equations are solved to locate 
exactly the higher-order singularities that arise on the paths of limit points and 
symmetry-breaking bifurcation points. 

2. Theory 
2.1. Basic equations 

We consider laminar, steady, fully developed flow within a curved tube, and seek the 
steady-state solutions of the NavierStokes and continuity equations in the toroidal 
coordinate system (R, Y, @) shown in figure 1. In practice, it  is more convenient 
to use the related coordinate system (X, Y, Z), where X = R-C, dZ = Rd@, and 
C is the radius of curvature, and the equations in these coordinates are non- 
dimensionalized using the following scales : 

lengthscale A for the radial X- and axial Z-coordinates, where A is the half-width 
of the rectangular cross-section ; 
lengthscale B for the tangential Y-coordinate, where B is the half-height of the 
rectangular cross-section ; 
velocity scale v / A ,  where v is the kinematic viscosity; 
pressure scale pv2/A2,  where p is the density. 

The above choice of a different scale for the Y-coordinate introduces the aspect ratio 
y = B / A  as an explicit parameter in the equations, so that continuation in y is 
possible. 

With the above assumptions, the steady-state Navier-Stokes and continuity 
equations are 

and 

where 

and aP 
a2 

q = - .  

(4) 

/? is the non-dimensional radius of curvature CIA. 

conditions : 
The boundary conditions are the usual Dirichlet no-slip and pressure-reference 

u = v = w = 0 on the wall of the pipe; 
p = 0 a t  an interior point. 
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FIGURE 1. Geometry for a curved tube of rectangular cross-section. 
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FIGURE 1. Geometry for a curved tube of rectangular cross-section. 

The stream function S was obtained from the computed velocity components, as 
an aid to visualizing the secondary flow. We use the definition 

u=-- B as. 2, = B as. 
( X + B ) Y  aY ' (x+p) ax' 

so that S is given by 

2 as (x;B)(i: E) (x+B) ax 
-+ v2s = 0, - _- - - - - 

where V2 is defined in the equation following (4). 
For a given cross-section, the NavierStokes equations contain two parameters, 

the axial pressure gradient q and radius of curvature /3, which determine the flow. 
Dean (1928) showed that, for large enough radii of curvature, q and B can be combined 
into a single parameter that characterizes the flow, the Dean number Dn. The results 
of the present work are obtained explicitly at various values of B, to establish to what 
extent the approximation of Dean is valid. 

We define the Dean number Dn as the following combination of Reynolds number 
Re and the radius of curvature p: 

D- 
A Dn = Rep-: = -w 8-4. 

The Reynolds number (based on the non-dimensional mean axial velocity U, and 
hydraulic diameter D) is defined as 

DE 
R e = - .  

A 

The mean axial velocity W 

The hydraulic diameter 
area to the perimeter, and 
considered here : 

is calculated from 

is defined as four times the ratio of the cross-sectional 
has the following value for the rectangular cross-section 

4AB 4Ay D = - -  
A + B - l + y '  
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Various definitions of the Dean number are widely used, based on either the axial 
pressure gradient or the mean axial velocity, together with other obvious differences 
arising from the choice of lengthscale. The definition of the Reynolds number is 
usually based on the mean axial velocity, but sometimes the axial pressure gradient 
is used. We stress that the Dean number derived in the present work uses a Reynolds 
number based on mean axial velocity and hydraulic diameter, and a radius of 
curvature based on half-width. 

2.2. The jnite-element formulation 
A weak formulation of the equations was derived by multiplying each equation by 
a test function and integrating the second-order terms by parts, to give 

The test functions t ,  and t ,  have square-integrable first derivatives and t ,  vanishes 
on the boundary of the tube. 

In  the finite-element approximation to these weak equations, the velocity com- 
ponents and pressure are approximated by expansions in quadratic and linear basis 
functions respectively. Similarly, the test functions t ,  and t ,  are chosen from the set 
of quadratic and linear basis functions respectively. Six-noded triangular elements 
were used, with the quadratic basis functions defined at all nodes and the linear 
functions defined at the vertex nodes only. 

2.3. Extended systems 

Let the discrete equations that result from the finite-element approximation of the 
Navier-Stokes equations be written 

&,A) = 0, (9) 

where x is the solution vector and 1 is the vector of parameters for the problem, 
1 = (a, y ,  B). To find singular points of codimension 1, (9) is solved for fixed aspect 
ratio y and radius of curvature B to obtain the critical value of axial pressure gradient 
p at which the solution x is singular. For singular points of codimension 2 only the 
radius of curvature /3 is fixed, and (9) is solved to obtain the critical values of the 
axial pressure gradient p and aspect ratio y at which the solution x is singular. 

A singular point of the set of equations (9) may be found by solving them 
simultaneously with conditions that are satisfied at that point. The solution of such 

12 FLY 180 
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2.3.1, Sgmmety-breaking bifurcation points 
A symmetry-breaking bifurcation point is represented in figure 2(a). As the 

parameter q increases, there i s  a pitchfork bifurcation into three branches, and the 
upper and lower branches correspond to asymmetric solutions. Symmetry-breaking 
bifurcation points in the present problem were located with the algorithm of Werner 
& Spence (1984), which proposes the extended set of equations 
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Y = Yc 

FIGURE 2. State diagrams for singular points of codimension I and 2: (a) symmetry-breaking 
bifurcation point; (b)  limit point; (c) non-degenerate hysteresis point; (d) transcritical bifurcation 
point; (e) coalescence point; ( f )  quartic point; (g) double-singular point. 

Here, 4 is the right eigenvector of the Jacobian matrix, and I is a linear functional 
which normalizes #. The solution x and the eigenvector 4 must belong to the subspace 
of symmetric and antisymmetric flows respectively. The algorithm is applied to the 
subdomain over which the symmetry of the solution is broken. In the present case, 
the equations were solved in the upper half of the cross-section. 

Details of the finite-element formulation of this algorithm are to be found in Cliffe 
& Winters (1986). 

2.3.2. Limit points 
A limit point, or one-sided bifurcation point, occurs when two additional solutions 

become possible above a critical value of q. This is illustrated in figure 2 ( b ) .  The 
alternative configuration with two secondary modes disappearing above a critical q 
is not shown. Limit points were found using an algorithm due to Moore & Spence 
(1980). The extended set of equations is 



350 K .  H .  Winters 

In this case, unlike the previous algorithm, the solution and eigenvector are not 
constrained to symmetric and antisymmetric subspaces. 

The Moore-Spence algorithm has been used in a finite-element formulation by Cliffe 
(1983, 1984), Cliffe & Winters (1984), Winters & Brindley (1984) and Cliffe & Mullin 
(1985). 

2.3.3. Non-degenerate hysteresis points 
A non-degenerate hysteresis point occurs as a second parameter y varies through 

a critical value yH, and a pair of limit points either appear or disappear, as shown 
in figure 2 (c ) .  The paths of limit points then meet at a cusp point in the two-parameter 
space (q, y ) .  Non-degenerate hysteresis points were located using an extended system 
similar to that of Roose & Caluwaerts (1984). The equations (1 1) are solved with the 
additional condition 

v&zk 4 66 = 0, (12) 

where y is the left eigenvector of the Jacobian matrix. This condition has been used 
by Spence & Jepson (1984) (see also Jepson & Spence 1984, 1985). 

2.3.4. Transcritical bifurcation points 
A transcritical bifurcation point occurs at a critical value of the second parameter 

yT, when two limit points merge as in figure 2 (d). It corresponds to a turning-point 
on the path of limit points in the two-parameter space (q,y). The transcritical 
bifurcation point of figure 2 ( d )  was found by solving (11) with the additional 
condition (Jepson & Spence 1984) 

W f , k  4 = 0. 

This has been used in a finite-element formulation by Cliffe (1984). 

2.3.5. Coalescence points 
The state diagram for a coalescence point is similar to that of the previous singular 

point, and corresponds to the merging of two symmetry-breaking bifurcation points 
at a critical value yc, as in figure 2 ( e ) .  It appears as a turning-point on the path of 
symmetry-breaking bifurcation points in the space (q, y) .  The coalescence point of 
figure 2 ( e )  was located by solving (10) with the additional condition (Cliffe & Spence 
1984) 

WU,,k 4 4 +f,,(x, 4 &,I = 0, (14) 

and h, belongs to the subspace of symmetric flows. 

2.3.6. Quartic points 
A quartic point occurs at the transition between a supercritical and a subcritical 

symmetry-breaking bifurcation, as illustrated in figure 2 (f ). At the critical value of 
the second parameter yQ, the asymmetric branch has a quartic dependence on the 
difference of q and its critical value. This contrasts with the usual quadratic 
dependence of supercritical and subcritical bifurcations. In  the two-parameter space 
(4, y ) ,  the quartic point marks the emergence of a path of limit points from the path 
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of symmetry-breaking bifurcation points. Quartic points were located by solving (10) 
with the additional condition (Cliffe & Spence 1984) 

and g belongs to the subspace of symmetric flows. 

2.3.7. Double-singular point 
A double-singular point occurs at a critical value yD when a symmetry-breaking 

bifurcation point passes around a limit point, as illustrated in figure 2(g). In  the 
two-parameter space (q, y) ,  the paths of limit points and symmetry-breaking 
bifurcation points touch but do not cross. A path of Hopf bifurcation points arises 
at a double-singular point but these were not computed in the present study. 

Double-singular points were located by solving the set of equations (Werner 1984) 

(16) I f(x,4 = 0, 

f,k, 4 4 s  = 0, 

f,k, A )  h = 0, 

W S )  = 1,  

4 ( 4 a )  = 1, 
where & and #a belong to the subspaces of symmetric and antisymmetric flows 
respectively. 

2.3.8. Continuation 
The present problem involves three parameters and we wish to study the behaviour 

of the flow as each of these is changed. It is clearly essential to have an efficient 
method for computing the solution as these parameters vary; Eulel-Newton 
continuation is an effective means of following a particular solution branch. In its 
most simple form the solution f' obtained at q = q0, and its derivative a$'&, are 
used to predict the solution x1 at a new value ql, from 

ax" x' = f'+-(q'-qO). a!l 
The Newton-Raphson iterations converge rapidly at each value of q, for a suitable 
step size (ql-qo), but this procedure ultimately fails at a limit point in the solution 
curve, where the Jacobian matrix of (9) is singular. A better method uses a 
pseudoarclength parameter 8 to parametrize the solution (Keller 1977). As an 
example, we suppose that continuation in q is required. Instead of the basic 
Naviedtokes equations, we solve the extended system 

where 

With Euler-Newton continuation in 5 rather than q, it is possible to follow the 
solution around a limit point, since the Jacobian matrix of system (17) is non-singular. 
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The presence of a symmetry-breaking bifurcation point or limit point is determined 
by monitoring the Jacobian determinant, which changes sign as the singular point 
is passed. 

Continuation of the solution onto the asymmetric branch which arises from a 
symmetry-breaking bifurcation point was achieved by using the eigenvector at  the 
singular point as a guess for the derivative a f / a q  of the asymmetric solution. 

The paths of singular points were traced out by applying continuation in y and 
/3 to the appropriate extended system, augmented in the manner of (17). 

The Keller pseudoarclength method was found to be very effective in determining 
the complex structure of the bifurcation set of the present problem. A refinement 
would be to use an algorithm for automatically changing the step length, as in 
Jackson & Winters (1984), but no such procedure was adopted here. Instead, the step 
size was simply increased by a constant factor of 1.4 each time the iterations 
converged successfully, and halved otherwise. 

3. Results 
Since we are interested in possible asymmetric flows, the equations were solved 

initially on a grid of elements over the full cross-section, rather than the usual 
half-grid with imposed symmetry about the horizontal mid-plane. A grid consisting 
of n and m elements in the x- and y-directions respectively will be denoted an n. x m 
grid, and the letter h or f will be appended to indicate that either the half- or full 
cross-section was discretized by those elements. We obtained most of the initial 
solutions on a 14 x 14f grid to give an approximation to the solution structure, and 
then we refined the grid to find the precise location of limit points and bifurcation 
points. An interesting phenomenon was the appearance of spurious symmetry- 
breaking bifurcation points on a grid that was too coarse. For example, a 6 x 6f grid 
was found to give rise to three such points over a small range of q,  which vanished 
on refining the grid to 14 x 14 elements. 

Once a symmetry-breaking bifurcation point or limit point was found on the full 
grid, then its position was located more accurately on a half-grid using the 
appropriate extended system. Similarly, the paths of the singular points and the 
positions of higher-order singularities were obtained on a half-grid. 

All computations were carried out using the ENTWIFE code, developed at Harwell 
for solving problems of heat transfer and fluid flow, and based on the TGSL library 
of finite-element subroutines. In  all calculations the convergence criterion used for 
terminating the Newton-Raphson iterations was that the difference in absolute value 
of each of the global freedoms (including the bifurcation parameters) between 
successive iterations was less than A t  this threshold the iterations are 
terminated well within the region of quadratic convergence. 

3.1. Square cross-section 
We consider first a square cross-section, y = 1, and a fixed radius of curvature of 
/3 = 50. Results were obtained for a small axial pressure gradient q,  by continuation 
from an initial guess with zero q. 

3.1 .l. Solution structure 
The solution structure found for y = 1 and /3 = 50 is complex and it is best 

discussed with reference to the schematic diagram of figure 3. This records the 
variation of some measure of the symmetric solution xs, the central axial velocity 



Bifurcation of laminar jiow in a curved tube of rectangular cross-section 353 

1 4 - 4 1  

s 
FIGURE 3. Schematic state diagram showing the variation of a measure of the symmetric component 
of the solution xs with the axial pressure gradient q, for a square cross-section. S denotes a symmetric 
solution, A an asymmetric solution, B a eymmetry-breaking bifurcation point and L a limit point. 
The sign of each branch is (- l)", where n is the number of negative eigenvalues of the Jacobian 
matrix. A broken line indicates an asymmetric solution. 

for example, with axial pressure gradient q. The branches that correspond to 
symmetric and asymmetric solutions are shown as solid and broken lines respectively. 
The structure of the symmetric solutions is that of an unfolded transcritical 
bifurcation with an additional limit point. The branch S, develops continuously from 
the origin into the branch S,, through limit points L, and L,. A disconnected branch 
with a limit point a t  L, lies at higher values of q. The curves labelled S, and S, are 
of symmetric two-cell type, away from the limit points, while those labelled S,, S, 
and S, correspond to four cells away from the limit points. 

A pair of asymmetric solutions A, arise from a symmetry-breaking bifurcation 
point B, on the branch S,. This pair, which have identical symmetric components, 
appear as one branch on the present figure. If one imagines a measure of the 
antisymmetric component of the solution along an axis out of the page, then one 
asymmetric branch emerges from B, out of the page, and the other goes into the page ; 
A, is the projection of this pair of solutions onto the page. The asymmetric branch 
itself has a pair of limit points, L, and L,, and it will be seen later that they arise 
at two quartic points which occur at higher aspect ratio. 

It should be stressed that the symmetry-breaking bifurcation point appears only 
when the problem has ezuct symmetry about the horizontal axis. Any asymmetry 
in the problem unfolds the bifurcation point, so that one of the mymmetric solutions 
develops smoothly from the +S, branch, while the other develops from the -S, 
branch, both without bifurcation. This effect wm demonstrated by using a grid with 
an asymmetric pattern of elements. The unfolding will be present to some extent in 
any experiment, especially when the curved tube is approximated by a helical coil 
of small pitch, and the amount of unfolding will depend on the degree of asymmetry. 
We note that this unfolding alone cannot stabilize the asymmetric branch. 

The actual solution structure for y = 1 and /3 = 50, predicted on a 14 x 14f grid, 
is shown in figure 4(a) using the central axial velocity as a measure of the solution. 
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FIGURE 4. (a)  Computed state diagram showing the variation of central axial velocity with q, for 
a square cross-section with radius of curvature = 50. ( b )  Enlargement in region of lowest two limit 
points. (c) Enlargement in region of highest three limit points. 

Figure 4(b,  c )  shows enlargements of this in the region of the limit points. The 
closeness of the different solutions is interesting, and the values of the central axial 
velocity for a given q generally lie within 10 yo of one another. Also, the symmetry- 
breaking bifurcation point B, lies very close to the limit point L,, and these features 
caused some difficulty in obtaining the solution structure. Initially, the primary 
branch S, was followed by continuation in q, but beyond q = 3400 the flow was found 
to change to a four-cell type with a slight asymmetry; the solution had been continued 
from S, to A,. After q = 5600 a transition back to two-cell flow was found. It was 
only by forcing very small steps in the pseudoarclength parameter s that we were 
able to follow the primary branch cont.inuously from S, on to S,. 
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Singular point Grid 9 Dn 

L, 20 x 20h 
16 x 16h 
12 x 12h 

L, 20 x 20h 
16 x 16h 
12 x 12h 

L, 20 x 20h 
16 x 16h 
12 x 12h 

Bl 20 x 20h 
16 x 16h 
12 x 12h 

2896.24 
2897.64 
2904.35 
34 16.32 
34 16.78 
34 13.27 
5564.17 
5574.21 
5616.85 
3371.07 
3371.68 
3369.95 

80.15 
80.18 
80.35 
92.72 
92.73 
92.64 

134.9 
135.1 
136.1 
91.72 
91.74 
91.70 

TABLE 1. Singular points of codimension 1, at y = 1 and /3 = 50 : L, limit point; 
B, symmetry-breaking bifurcation point 

The values of the limit and symmetry-breaking bifurcation points labelled L,, L,, 
L, and B, on figure 3 are given in table 1. They are tabulated for the finest grid 
considered and also for coarser grids to give some indication of the degree of grid 
convergence. The error in the singular points is expected to vary as the fourth power 
of the mesh spacing, a rate of convergence equal to the square of the rate of 
convergence of the velocity components (Winters & Cliffe 1985). 

The nature of the flow on each of the branches was established by computing the 
stream function. Well-defined two- or four-cell flows were found, except near the limit 
points, where the flow was of intermediate type. Figure 5 compares contour plots of 
stream function and axial velocity for the one asymmetric and three symmetric 
solutions at q = 3390. This value of q is just less than the critical value at the limit 
point L,. The figures show that the flow on the S, and S, branches is similar and 
weakly of the four-cell type. On the other hand, the secondary pair of cells in the 
four-cell flow on the S, branch are strong. Only one of the pair of asymmetric solutions 
is shown and the other is obtained by reflection about the horizontal mid-plane. 
Although the secondary vortex pair is weak the asymmetry is clear. 

Before comparing the flows with the results of previous work it is important to 
discuss the stability of each of the branches, and this is done in the following section. 

3.1.2. stability ofJlows 
A solution of (9) is stable when the Jacobian matrix has no negative eigenvalues. 

We obtain an indication of the stability from the sign of the Jacobian determinant, 
which is equal fo ( -  l)n, where n is the number of negative eigenvalues of the matrix. 
Thus, a negative value of the Jacobian determinant implies that the corresponding 
flow is unstable, but a positive value is insufficient to indicate stability. 

The sign of the Jacobian determinant for each of the branches in the present caae 
is given on figure 3, which shows that the four-cell flows on S, and S, are unstable. 
The S, branch has a positive Jacobian determinant, and the corresponding two-cell 
flow must be stable, since the branch connects smoothly with the origin of the state 
diagram at q = 0, and has no bifurcation points. The Jacobian determinant for the 
two-cell flow on S, is also positive, and we expect the flow to be stable, since this 
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FIGURE 5a-d. For caption see facing page. 

branch is continuous with S, for an appropriate value of the parameter that unfolds 
the transcritical bifurcation. As for the remaining branches, their stability can be 
inferred as follows. There are no negative eigenvalues on S,, but as we pass around 
the limit point L,, on to S,, then one real eigenvalue corresponding to a symmetric 
eigenvector becomes negative, and so does the Jacobian determinant. As p is 
decreased, we pass through the symmetry-breaking bifurcation point B, on S, and 
a second eigenvalue becomes negative, this time corresponding to an antisymmetric 
eigenvector. The Jacobian determinant is now positive again but the flow is unstable. 
As we vary q further we pass around the limit point L, onto the curve S, and the 
negative eigenvalue corresponding to the symmetric eigenvector becomes positive. 
There remains one negative eigenvalue and the Jacobian determinant is negative. 
Thus the four-cell flow on S, is unstable to perturbations that break the horizontal 
symmetry. The asymmetric branch A, has the same stability properties as the +S, 
branch, and has two negative eigenvalues making it unstable. 

We can summarize the above discussion by stating that all the solutions are 
unstable, except those on the two-cell branches S, and S,, when perturbations that 
break the horizontal symmetry are taken into account. This has important 
implications for calculations that impose symmetry over the half-domain. Then the 
asymmetric branch A, vanishes and the four-cell branch is predicted to be stable. 
Our analysis also shows that for square cross-sections there is a range of q for which 
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FIGURE 5. Multiple solutions for the square crowsection at an axial pressure gradient q = 3390 and 
radius of curvature /? = 50. (a) Streamlines and ( b )  axial velocity contours on the branch S,; (c) 
streamlines and (d) axial velocity contours on the branch S,; (e) streamlines and (f) axial velocity 
contours on the branch S,; (g) streamlines and (h) axial velocity contours on the branch A,. 

there are no stable solutions. We note that our assumption of fully developed flow 
limits our analysis to disturbances that preserve the translational 2 -symmetry, and 
there may be further bifurcations to flows that break this symmetry and that cannot 
be found in the present treatment. 

3.1.3. Comparison with previous work 
We are now able to interpret the results of previous work according to the solution 

structure that we have found. The four-cell flows, which have been predicted 
previously for square cross-sections, appear as a transition from the two-cell flow at 
a given Dean number. Theoretical work has shown this transition to occur at : 
Dn between 95 and 107 for a radius of curvature t? = 100 (Joseph et al. 1975); 
Dn = 101 for B = 71 (Ghia & Sokhey 1977); 
D n  between 95 and 108 for B = 10 (De Vriend 1981); 
Dn between 107 and 143 for /? = 200 (Cheng et al. 1976). 
The transition is clearly associated with the limit point L, of figures 3 and 4, since 

the two-cell flow ceases to exist at that point, and reappears only at the limit point 
L,. The calculations of Joseph et al., De Vriend and Cheng et al. were carried out on 
a half-grid with imposed symmetry about the horizontal centreline. As discussed, this 
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FIGURE 6. The variation of mean axial velocity W with axial pressure gradient q, for a square 
cross-section with radius of curvature /3 = 50. In this case the Dean number is Dn = 0.283W. 

does not permit asymmetric solutions and removes the asymmetric branch A, of 
figure 3. Thus, in these three calculations the predicted four-cell flow corresponds to 
a transition from the S, to the S, branch at the critical value of q associated with 
the limit point L,. It is interesting to note that the authors would have observed a 
hysteresis effect had they decreased the axial pressure gradient q, on obtaining a 
four-cell flow. We have also shown that the S, branch is stable when symmetry is 
imposed, and this agrees with the fact that Joseph et al. were able to predict the 
four-cell flow with a transient method. Regarding the work of Ghia & Sokhey, they 
give computational times for both a full and a half-grid, and it is unclear which was 
used to predict their four-cell flow. However, the secondary pair of cells in their 
four-cell flow is comparable in strength with the primary cells. This would indicate 
that it corresponds to the branch S,, as in the previous calculations. 

In table 1 we give the values of the Dean numbers corresponding to the critical 
values of q for the singular points of figure 3. The critical Dean number for the L, 
limit point is predicted as 92.7, which is lower than the transitional values found in 
the other work. However, it should be stressed that the Dean number is not an 
independent parameter of the calculation. It is calculated from the mean axial 
velocity, which is a non-unique function of q. Figure 6 shows the variation of the mean 
axial velocity W with q, for y = 1 and /3 = 50. In this case the Dean number is given 
by Dn = 0.283W. It is clear that the Dean number at the critical value of q for the 
limit point L, is different on the two- and four-cell branches. The Dean number for 
the appearance of the four-cell flow at L, is 89.1 compared with a Dean number of 
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92.7 for the disappearance of the two-cell flow. It is also apparent that the Dean 
number is decreasing as the limit point L, is approached along the S, branch, SO that 
the critical Dean number is less than the maximum attained, although this effect 
seems to be small in the present case. It should be noted also that the values of the 
radius of curvature adopted in the various calculations vary widely. The effect of this 
is considered in 53.3. 

The experimental work with square cross-sections also indicates a transition from 
two- to four-cell flow, as in the calculations. Experimental work has shown this 
transition to occur a t :  
Dn of around 100 for a radius of curvature /3 = 7.7 (Joseph et al. 1975); 
Dn = 106 for /3 = 12.9 (Hille et al. 1985). 
The observation of a four-cell flow appears to conflict with the structure predicted 

in figure 3, which shows that only the two-cell flow is stable, and that there are no 
stable flows for values of q between 3413 and 5617, corresponding to Dean numbers 
of 92.6 and 136.1. Unfortunately, the experiments of Joseph et al. (1975) were, in their 
own words, insufficiently quantitative to check the details of the flow. They describe 
only a swirling pattern near the outer face, in addition to the primary cells. On the 
other hand, the experiments of Hille et al. (1985) are very detailed, but the flow in 
their work is not fully developed. However, a striking feature of the work of Hille 
et al. is the distinct asymmetry shown in their visualization of the four-cell flow, as 
found for the predicted flow on branch A, of figure 3. The identification of their four- 
cell flow with the A, branch is given further support by their measurement of the 
strength of the secondary vortex pair. They find that it increases from zero a t  the 
transition, reaches a maximum, then decreases until the four-cell flow changes back to 
two-cells. This behaviour is not characteristic of the four-cell flow on the S, branch, 
as is clear from figure 5,  since the secondary vortex pair is already very strong at the 
transitional value of q. 

Thus, we interpret the observed transition to four-cell flow as the transition from 
the symmetric branch S, to the asymmetric branch A,. This still leaves the question 
of the predicted instability of the branch A,. One possible mechanism which could 
stabilize the flow on the asymmetric branch is the presence of a Hopf bifurcation point 
on A,. A Hopf bifurcation occurs when a complex pair of eigenvalues passes between 
the positive and negative real half-planes, and causes a transition to time-periodic 
flow. This bifurcation is difficult to detect in a steady calculation, since there is no 
change in sign of the Jacobian determinant. If there were such a bifurcation on the 
A, branch, corresponding to the two negative eigenvalues on A, becoming positive, 
then a time-periodic unstable solution would bifurcate from the singular point, 
stabilizing the asymmetric branch at higher q. 

In  order to investigate this possible mechanism, we carried out an eigenvalue 
analysis on the A, branch, as follows. We introduced the time-dependent terms in 
the Navier-Stokes equations (1 )-(3) and assumed a time-dependence e-d. Incorpor- 
ating these terms in (5)-(7) leads to an eigenvalue problem of the form 

f z X  = uMX, 

where fz is the Jacobian matrix and M is the mass matrix arising from the 
time-dependent terms of the Navier-Stokes equations. This equation was solved for 
the lowest 20 eigenvalues u at selected values of q on the A, branch. At q = 3348, 
just higher than the symmetry-breaking bifurcation point B,, two negative real 
eigenvalues were found. At q = 3390, just below the transitional value L,, these had 
collided and formed a complex pair of negative real part, with imaginary part equal 
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FIGURE 7. Schematic diagram of the bifurcation set (q, y ) ,  showing the paths of limit points (solid 
curves) and the paths of symmetry-breaking bifurcation points (broken curves) as the aspect ratio 
varies, for radius of curvature B = 50. 

to 3.7. At q = 3420, the magnitude of the negative real part had increased, and this 
trend continued to q = 4000, where the imaginary part was 16.6. We repeated these 
eigenvalue calculations at the radius of curvature = 12.9 used by Hille et al., with 
similar conclusions. 

We conclude from the above calculations that the A, branch is genuinely unstable 
with respect to perturbations that break the horizontal symmetry, in the present 
approximation of fully developed flow. The existence of a pair of complex eigenvalues 
of negative real part suggests that it is unstable in an oscillatory fashion for values 
of q between L, and L,. 

3.2. Rectangular cross-section 
The methods described in $2 were used to follow the paths of limit points and 
symmetry-breaking bifurcation points found at y = 1, as the aspect ratio varied. In 
this way the bifurcation set in the parameters (q, y )  was obtained, for a fixed value 
of/9=50. 

3.2.1. Bijurcution set (0, y )  
The bifurcation set is complex and a schematic diagram is shown in figure 7. First, 

we consider the paths of limit points, which are shown as solid lines. The location 
of the limit points at y = 1 is indicated. The minimum value of q for the appearance 
of multiple solutions, which is determined by the location of L,, decreases as the 
aspect ratio increases. In  contrast, the limit point L,, which marks the disappearance 
of the primary two-cell flow, first moves to smaller q, then to larger q, until it reaches 
the turning-point TI, where it merges with the limit point L,. T, is a transcritical 
bifurcation point, represented schematically in figure 2 (d). For aspect ratios greater 
than TI, there is only a single limit point L, and the branch S,/S, is disconnected 
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FIQURE 8. (a) Computed bifurcation set (q, y )  for a radius of curvature f i  .o 60, with the aame 
notation aa in figure 7. (b)  Enlargement in the region of the ‘swlcllowtlcil’. 

Singular 
point Grid 9 Y an. 
TI 32 x 32h 1992.29 1.42666 76.06 

24 x 24h 1092.03 1.42676 78.86 
16 x 16h lOeo.18 1 A2034 70.08 
12 x 12h 1982.99 1.42806 76.88 

c, 12 x 12h 1978.63 1.42837 78-74 
c, 12 x 12h 3122.24 1.2639b 101,O 
HI 24 x 24h 2366.09 1.40342 86 I 98 

20 x 20h 2367.25 1.40319 86.02 
16 x 16h 2371.48 1.40219 86.12 
12 x 12h 2399.70 1.39486 86.71 

H* 24 x 24h 2773.26 1,31688 84.34 
20 x 20h 2773.59 1.31689 84.311 
16 x 10h 2774.43 1.31682 94.37 

20 x 20h 2107.32 1.41872 78.58 
16 x 16h 2108.16 1.41878 78,41 
12 x 12h 2112.79 1.41824 78.86 

D* 20 x 20h 2421.40 1.38031 87,22 
16 x 16h 2427.63 1.38782 87.35 
12 x 12h 2468.47 1.37787 ~ 2 1  

81 12 x 12h 3082.80 1.26838 100.2 

12 x 12h 2774.88 1.81642 94.88 
Dl 

Q% 12 x 12h 2992.08 1.28454 08.69 
TABLE 2. Singular points of codimension 2, at B = 50: T, transcritical point; C, coalescence 

point; H, non-degenerate hysteresis point; D, double-singular point; Q, quartic point 
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(a) y = 1.428 (b) y = 1.426 

(c) y = 1.419 (d )  y = 1.403 

(e) y = 1.378 

/ 
(g )y=  1.317 

m y =  1.341 

(h) y = 1.264 

FIGURE 9. Schematic state diagrams showing the variation of a measure of the symmetric 
component of the solution xs with the axial pressure gradient q, for aspect ratios between 1.264 
and 1.428. A broken line indicates an asymmetric solution. 

from the primary two-cell branch S,. The limit point L,, which marks the reappear- 
ance of the two-cell flow, traces out a complex path which crosses over itself and 
forms a pair of non-degenerate hysteresis points H, and H,. This structure is typical 
of an unfolded swallowtail catastrophe, but it is not clear what the unfolding 
parameter is in this ca>se; we shall see later that it is not the radius of curvature @. 
The ' swallowtail ' corresponds to the creation and collapse of additional pairs of limit 
points on the S, and S, branches. 

The path of the symmetry-breaking bifurcation point B,, which is traced out by 
varying the aspect ratio, is also complex. It has two turning-points C, and C,, which 
are coalescence points, two double-singular points D, and D, where it touches a path 
of limit points, and two quartic points Q,  and Q, where the type of bifurcation 
changes between supercritical and subcritical. 

It should be noted that the crossing of the paths of symmetry-breaking bifurcation 
points is possible because they lie on different branches, having looped around the 
non-degenerate hysteresis point Ha. 

The schematic diagram of figure 7 is incomplete in that we have not calculated the 
paths of limit points that arise at  Q,  and Q,. Similarly, we have not computed the 
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FIQTJRE 10. Computed state diagram showing the variation of GentFd axhl d d t y  with 9, for 
an aspect ratio y = 1.5 and a radius of cuwatqre p 5 50. 

paths of Hopf bifurcation points that are known to ariae at double-singular points 
such as D, and D,. It is now apparent that the limit points L, and L, found on the 
asymmetric branch A, at y = 1 have their origin at the quartic points Q, and Qo. 

The actual bifurcation set is shown in figure 8(a) with an enlargement of the 
'swallowtail' in figure 8(b) .  The transcritical bifurcation point is looated at 
y = 1.426, so that for aspect ratios greater than this value the two-ceU flow branch 
is continuous at all q, and the four-cell branch is compl&ely diaconnected. It is 
apparent from figure 8(b) that the swallowtail effect i e  conbed to a narrow range 
of aspect ratios, from 1.32 to 1.40. The symmetry-brw&ing bifurcation points lie very 
close to the limit points L, and L,. The \OC+@~OQS of the singular points in figure 8 
are given in table 2 for different gSida. 

3.2.2. Solution structure 

For aspect ratios greater than 1.426 the state diagram has the simple structure 
shown schematically in figure 9(a) .  However, a more complex form develops for 
values of y in the range in which the higher-order singularitiesl of the bifurcation set 
appear. Figure 9 shows the state diagrams schematically, at each of the singular 
points on figure 7, in decreasing order of aspect ratio. An additional point I, is 
included, which corresponds to the intersection of the paths of limit points, although 
this is not a singular point. This sequence of state diagrams shows the complex 
manner in which the unfolded transcritical bifurcation of the square cross-section 
develops from the disconnected structure seen for y greater than 1.426. 

The actual solution structure for an aspect ratio of 1.5 is shown in figure 10. As 
in figure 4, the central axial velocity is used as a measure of the symmetric component 
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ofthe solution. However, with this measure the S, branch now lies below the S, branch, 
in contrast to the y = 1 case. As we have discussed, the primary two-cell flow is 
disconnected from the secondary four-cell branch. The effect of the asymmetric 
branch arising from the symmetry-breaking bifurcation point is to destabilize the S, 
branch, as for the square cross-section. Thus, all solutions except the primary two-cell 
flow are predicted to be unstable. The stability of the branches was verified by explicit 
computation of the lowest eigenvalues of the Jacobian matrix, as for the square 
cross-section. For y = 1.5, there is clearly no range of axial pressure gradient over 
which there are no two-cell flows. 

The contours of stream function and axial velocity at q = 2500 are shown in figure 
11. The asymmetry of the flow on the A, branch is particularly pronounced, and the 
additional vortices of the four-cell flow are very strong. 

3.3. Effect of radius of curvature 
The final part of the present study concerns the effect of the radius of curvature on 
the location of the singular points. The aim is to obtain some indication of the validity 
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FIGURE 11. Multiple solutions for y = 1.5 at an axial pressure gradient q = 2500 and radius of 
curvature B = 50. (a) Streamlines and (6) axial velocity contours on the branch S,; (c) streamlines 
and (d )  axial velocity contours on the branch S,; (e) streamlines and ( f )  axial velocity contours 
on the branch S,; (9) streamlines and (h)  axial velocity contours on the branch A,. 

of the assumption that the Dean number characterizes the flow, and to allow a more 
meaningful comparison with other work which has been performed at various 
curvature ratios. 

Figure 12 (a) shows the variation in the values of axial gradient q for the singular 
points L,, L,, L, and B, at y = 1, and the higher-order singularities TI, H, and H,. 
Their location moves to increasingly smaller q as the radius of curvature is decreased. 
Figure 12 (b) shows the variation in the derived values of the Dean number Dn for 
the same singular points. There is comparatively little variation in the critical Dean 
numbers for large values of /3, but the singular points move to increasingly higher 
values of Dn as the radius of curvature is decreased below 20. The variation when 
/3 exceeds 50 is small and is not shown. As an example, L, varies between Dn = 79.1 
at /3 = 200 and Dn = 80.3 at /3 = 50. 

The experiments of Hille et al. (1985) used a radius of curvature of 12.9, and it is 
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FIGURE 12. The effect of radius of curvature on (a) axial pressure gradient, (a) Dean number, 
(c) aspect ratio, for the singular points indicated. 

interesting that there is strong variation in the location of the singular points at  this 
value of /3. The critical Dean number corresponding to L, is 98.5, which is closer to 
the value of 106 for the observed transition from two- to four-cell flow. 

Figure 12 (c) shows the variation in the critical aspect ratio y for the higher-order 
singularities T,, H, and H,. The separation in aspect ratio of the two non-degenerate 
hysteresis points actually increases as the curvature ratio is reduced, and is constant 
at large /3, so that /3 is not the unfolding parameter for the ‘swallowtail’. 

These results show that there is only a small variation in the derived Dean number 
for curvatures above 20, but below this value Dn is increasingly sensitive to B. 
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However, it is important to note that the relationship between the singular points 
remains constant, even at small /3, and so the bifurcation set (Dn,y)  remains 
qualitatively the same. 

4. Conclusions 
A detailed study of fully developed, laminar flow within a curved tube of 

rectangular cross-section has been presented. The solution structure was resolved 
using extended systems based on the Navier-Stokes equations to locate exactly the 
critical values of axial pressure gradient for a square cross-section. Continuation 
methods were used to trace the paths of the singular points as the aspect ratio and 
radius of curvature varied. 

In  the case of a square cross-section, the structure of the symmetric solutions was 
found to be an unfolded transcritical bifurcation, with multiple symmetric solutions 
in two distinct ranges of axial pressure gradient q. In  addition, a symmetry-breaking 
bifurcation point was found to give rise to a pair of asymmetric solutions above a 
critical value of q. The predicted structure clarifies the nature of the transition from 
two- to four-cell flow reported in previous work. 

Continuation of the solutions to different aspect ratios reveals a complex bifurc- 
ation set in the parameters q and y ,  with a number of higher-order singularities. In  
particular the path of limit points crosses in the manner of an unfolded swallowtail 
catastrophe. The transcritical bifurcation point was found to be located at y = 1.43; 
for higher aspect ratios the secondary four-cell branch is disconnected from that of 
the primary solution. 

The stability of the solutions was analysed and it was found that, in the present 
approximation of fully developed flow, all multiple solutions except the two-cell type 
are unstable with respect to either symmetric or antisymmetric perturbations. For 
values of the aspect ratio less than 1.43 there is a region of Dean numbers for which 
there is no stable flow. The unstable, asymmetric flows in this region are similar to 
those observed in the experiments of Hille et 01. (1985). 

We have demonstrated the importance of the asymmetric solutions in determining 
the stability of the symmetric flows in a curved tube. This highlights the danger of 
imposing the symmetry of the flow equations onto the solution itself; such an 
assumption excludes the possibility of asymmetric flows, and in general it may lead 
to the prediction of an incomplete solution structure with incorrect stability 
properties. 

The effect of radius of curvature was also investigated. The critical Dean numbers 
of the singular points were found to vary strongly at small values of the radius of 
curvature, but the bifurcation set remained qualitatively the same. 

We have shown that the complex structure arising from the nonlinear equations 
is revealed in an efficient way by using extended systems with parameter continu- 
ation. It is intended to use this approach to identify the nature of the dual solutions 
found for other cross-sections. 

It is a pleasure to thank K. A. Cliffe for many discussions, and Drs T. Mullin and 
M. J. Norgett for helpful comments. 
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